Dasar uji kai kuadrat itu sendiri adalah membandingkan perbedaan frekuensi hasil observasi (O) dengan frekuensi yang diharapkan (E). Perbedaan tersebut meyakinkan jika harga dari Kai Kuadrat sama atau lebih besar dari suatu harga yang ditetapkan pada taraf signifikan tertentu (dari tabel χ2).
Uji Kai Kuadrat dapat digunakan untuk menguji :
1. Uji χ2 untuk ada tidaknya hubungan antara dua variabel (Independency test).
2. Uji χ2 untuk homogenitas antar- sub kelompok (Homogenity test).
3. Uji χ2 untuk Bentuk Distribusi (Goodness of Fit)
Sebagai rumus dasar dari uji Kai Kuadrat adalah :
Keterangan :
O = frekuensi hasil observasi
E = frekuensi yang diharapkan.
Nilai E = (Jumlah sebaris x Jumlah Sekolom) / Jumlah data
df = (b-1) (k-1)
Dalam melakukan uji kai kuadrat, harus memenuhi syarat:
- Sampel dipilih secara acak
- Semua pengamatan dilakukan dengan independen
- Setiap sel paling sedikit berisi frekuensi harapan sebesar 1 (satu). Sel-sel dengdan frekuensi harapan kurang dari 5 tidak melebihi 20% dari total sel
- Besar sampel sebaiknya > 40 (Cochran, 1954)
- Tidak boleh ada sel yang mempunyai nilai harapan lebih kecil dari 1 (satu)
- Tidak lebih dari 20% sel mempunyai nilai harapan lebih kecil dari 5 (lima)
Contoh Kasus:
Suatu survey ingin mengetahui apakah ada hubungan Asupan Lauk dengan kejadian Anemia pada penduduk desa X. Kemudian diambil sampel sebanyak 120 orang yang terdiri dari 50 orang asupan lauknya baik dan 70 orang asupan lauknya kurang. Setelah dilakukan pengukuran kadar Hb ternyata dari 50 orang yang asupan lauknya baik, ada 10 orang yang dinyatakan anemia. Sedangkan dari 70 orang yang asupan lauknya kurang ada 20 orang yang anemia. Ujilah apakah ada perbedaan proporsi anemia pada kedua kelompok tersebut.
Jawab :
HIPOTESIS :
Ho : P1 = P2 (Tidak ada perbedaan proporsi anemia pada kedua kelompok tersebut)
Ho : P1 ≠ P2 (Ada perbedaan proporsi anemia pada kedua kelompok tersebut)
PERHITUNGAN :
Untuk membantu dalam perhitungannya kita membuat tabel silangnya seperti ini :
Kemudian tentukan nilai observasi (O) dan nilai ekspektasi (E) :
Selanjutnya masukan dalam rumus :
Perhitungan selesai, sekarang kita menentukan nilai tabel pada taraf nyata/alfa = 0.05. Sebelumnya kita harus menentukan nilai df-nya. Karena tabel kita 2x2, maka nilai df = (2-1)*(2-1)=1.
Dari tabeli kai kudrat di atas pada df=1 dan alfa=0.05 diperoleh nilai tabel = 3.841.
KEPUTUSAN STATISTIK
Bila nilai hitung lebih kecil dari nilai tabel, maka Ho gagal ditolak, sebaliknya bila nilai hitung lebih besar atau sama dengan nilai tabel, maka Ho ditolak.
Dari perhitungan di atas menunjukan bahwa χ2 hitung < χ2 tabel, sehingga Ho gagal ditolak.
KESIMPULAN
Tidak ada perbedaan yang bermakna proporsi antara kedua kelompok tersebut. Atau dengan kata lain tidak ada hubungan antara asupan lauk dengan kejadian anemia.
REFERENSI
- Murti, Bhisma. Penerapan Metode Statistik Non Parametrik Dalam Ilmu-ilmu Kesehatan. Jakarta: PT.Gramedia Pustaka Utama, 1996.
- Sabri, L., Hastono, SP. Statistik Kesehatan.Edisi Revisi. Jakarta: Rajawali Pers. 2008
- Siegel, Sidney. Statistik Non Parametrik Untuk Ilmu-ilmu Sosial. Jakarta: PT.Gramedia Pustaka Utama, 1992.
Blog Biostatistik : http://statistik-kesehatan.blogspot.com/2011/04/uji-kai-kuadrat-chi-square-test.html